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ABSTRACT 

Buchi in Lecture Notes in.Mathematics, Decidable Theories H (1973) by using 
A.C. characterized the theories MT[/3, < ]  for /3 < to, and showed that 
MT[to,, < ] is decidable. We extend Buchi's results to a larger class of models of 
ZF (without A.C.) by proving the following under ZF only: (1) There is a choice 
function which chooses a "good"  run of an automaton on countable input 
(Lemma 5.l). It follows that Buchi's results cocerning countable ordinals are 
provable within ZF. (2) Let U.D. be the assertion that there exists a uniform 
denumeration of to, (i.e. a function .f: to~---~ to'i ~ such that for every a < to,, [(a) 
is a function from to onto or). We show that U.D. can be stated as a monadic 
sentence, and therefore to~ is characterizable by a sentence. (3) Let F be the 
filter of the cofinal closed subsets of to,. We show that if U.D. holds then 
MT[to,, < ] is recursive in the first order theory of the boolean algebra P (tol)/F. 
(We can effectively translate each monadic sentence E to a boolean sentence o- 
such that [to,, < ] I = Z  iff P(to,)/FI=o-). (4) As every complete boolean algebra 
theory is recursive we have that in every model of Z F +  U.D., MT[to~, < ]  is 
recursive. All our proofs are within ZF. Buchi's work is often referred to. 
Following Buchi, the main tool is finite automata. We don't  deal with 
MT[to,, < ]  for to, which doesn' t  satisfy U.D. 

1. Preliminaries and notation 

The monadic second order language has two types of variables: individual 

variables (x, y, z, t, ...) and set variables (X, Y, Z, ...). It has relation letters R~ 

which are applied on individual variables only and the membership relation 

letter E between individual variables and set variables (e.g. x E X). 

Formulas are built up from atomic ones by the usual logical connectives and 

the quantifiers V, :1, applied on both types of variables. 

When we come to define the satisfaction relation between a structure [D, R~, 

) The results in this paper appeared in the author 's M.Sc. thesis, which was prepared at the 
Hebrew University under the supervision of Professor M. Rabin. 
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R2 .... ] and a formula, we have in mind a preset model M of ZF, to which the 

structure belongs. The individual variables range over the structure domain D, 

and the set variables range over all the subsets of D in M. 

Let [D, R1, R2 .... ] be a structure; by MT[D, R,, R2, ...] we denote the set of 

sentences holding in the structure. We limit our discussion to the language 

having the relations < and = only, and to models satisfying the order axiom 

" <  is a linear order"  and the well-ordered axiom VX :Ix Vy (y ~ X o x -< 

y A X E X).  Any such model is well-ordered, and, therefore,  isomorphic to an 

ordinal. 

We identify ordinals a with the set of smaller ordinals {/3 [/3 < a}. to1 is the 

first uncountable ordinal. We shall not deal with ordinals above to~. For an 

ordinal a, a '  denotes the successor of a. For ordinals a, /3, define the intervals 

[a,/3) = {y [a  = y </3}, [a,/3] = [a,/3').  Let A be a set of ordinals and x an 

ordinal; we say that A is cofinal in x if Vy[y < x --->::It (y < t < x A t E A) .  We 

sat that A is cofinal if A is cofinal in to~. A set A is closed if A contains every 

ordinal x such that A is cofinal in x (except for to~). 

We shall write (3"t)R(t) to denote that {tlR(t)} is cofinal in x. When x 

appears  in such notations it is assumed that x is a limit ordinal. Let LM (X) stand 

for " X  is a limit ordinal".  

2. Uniform denumeration 

DEFINITION 2.1. f:  to1--* to~' is a uniform denumeration of to~ if for every a, 

0 < a < to1, f ( a )  is a function from to onto a. Let U.D. be the assertion that 

there exists a uniform denumerat ion of oJ~. 

NOTE. if there exists a uniform denumerat ion f, then there exists a uniform 

denumerat ion f* such that for too -< a < to1, f * ( a )  is a one-one function from to 

onto a. 

DEFINITION 2.2. g: to~--* toL The function g is a uniform accessing function 
on to~ if for every limit ordinal a with a < to~, g(a) is an ascending function from 

to into a and the range of g(a) is cofinai in a. Let U.A. be the assertion that 

there exists a uniform accessing function on to,. 

DEFINITION 2.3. Given sets A,B Cto,, A is the derivative of B (written 

A = B ' )  if: 
(Lm(x) A (:l't)t E B)'~-~ x E A. 

DEFINITION 2.4. Let C.D. be the assertion that every closed set in to, which 

contains only limit ordinals is a derivative. Note that C.D. can be stated in the 

monadic language. 
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We shall see that U.D., U.A., and C.D. are equivalent under ZF. (Note that 

ZFC implies all of them; also if in the definitions we replace to1 by/3, /3 < to,, 

then ZF implies U.D. (/3), U.A. (/3) and C.D. (/3)). 

DEFINITION 2.5. Let y be a set cofinal in to, and a < to1, define the successor 
+ 4- ofI ICtoz ,  in y, ay,  by: a y =  m i n ( y - a ' ) .  

LEMMA 2.6. There exists a set II C to,, such that I1 is closed, it contains only 

limit ordinals and for every limit ordinal o~ < to,, there exists/3 < to, such that the 

interval [fl, fl~) is isomorphic to a. 

PROOF. We define: M = {(x, y), y < x < o)1} with the lexicographic order. M 

is isomorphic to to,, thus we can treat M as if it actually were to,. 

We define: I1 = {(x,0)l x is a limit ordinal or successor to a limit ordinal}. II 

contains only limit ordinals, 1-I is closed and every limit ordinal a < to~ is 

isomorphic to [(a, 0), (a ' ,  0)) where (t~', 0) is the successor of (a, 0) in FI. 

Q.E.D. 

Tr~EOREM 2.7. The following three are equivalent under ZF: 

1) U.D. 

2) U.A. 
3) C.D. 

PROOF. 

1) U . D . - * U . A .  From each function from to onto a limit ordinal a we can 

obtain uniformly an to sequence converging to a. 

2). U.A.--*C.D. Let Y be a set as above. Based on the assumption of 

uniform accessing we can obtain uniformly for every interval [y,y~,) with 

y E Y U {0} a subset Zy of type to cofinal in the interval. Z = ~Jy~,Zy u Zo 

satisfies the equality Z ' =  Y. 

3). U . A . - * U . D .  Let g be a u.a.f. (uniform accessing function). We shall 

construct a u.d. (uniform denumerat ion)  f by induction on a as follows: 

c¢ for i = 0 
f ( a ' ) ( i ) =  f ( a ) ( i - 1 )  for i j 0 .  

For a a lim. ord. (limit ordinal) we write ai for g ( a ) ( i ) ,  a~ is an to sequence 

ascending to a. With the functions f(ao) and f (a~+,-  al) we obtain a mapping 

from to × to onto c~. From this we obtain the function f ( a )  from to onto a. 

4) C.D.--* U.A. Let II be a set proved to exist in Lemma 2.6 and T such that 

T'  = II. For every lira. ord. a let/3 be the minimal ordinal for which a ~ [/3,/3fi). 
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The  set To = T ^ [/3,/3fi) is cofinal of type to on an interval  i somorphic  to a.  

F rom the T,, we const ruct  the u.a.f. 

LEMMA. 2.8. I f  to~ is singular then -7 U.D.  

PROOF. Let  ti be an to sequence  ascending to to~. If we assume that  there  

exists a u.d.f, then using the funct ions f(to) and f(ti+~- t~) we obta in  a m a p p i n g  

f rom to x to on to  to~. Cont rad ic t ion!  

CONCLUSION 2.9. MT[to,, <] is categorical and has finite axiomatization. 

That is: There is a monadic sentence L such that for every model [A, < ], 

[A, < ]  I= L iff [ A, < ] is isomorphic to [ to~, < ]. 

L is the conjunction of the following: 

1) < is a well-ordering. 

2) There is no last element. 

3) (-m C.D.)v(there is no cofinal set of type to). 

4) for every x, (3) does not hold relative to the interval [0, x).  

3. Finite automatamdefinition 

Let  Y~ be a finite set which we call the a lphabet .  

DEFINITION 3.1. A finite a u t o m a t o n  is a tr iplet  I ) = ( S , N , L )  where:  S is a 

finite set (the set of states),  N C S  × E ×  S, and L C P ( S ) x  S. 

Input  X is a funct ion X:  a - - ~ Y  where  a --- to~. a is the length of X and we 

write this a = l (X).  
Let  f be  a funct ion f rom an ordinal  a into a f n i t e  set Q. For  x _--- a a limit 

ordinal  we write:  
supXf = {a 1(3~t)f(t) = a}. 

DEFINITION 3.2. 

o f l q o n  X i f :  

f~ an a u t o m a t o n ,  X input  of length a <= to1. r :c t :~  S is a run 

1) For  every  t <= a, (r(t), X( t ) ,  r(t')) E N. 

2) For  every  lira: ord x _-< a (supXr, r(x) )E L. 

NOTE. The  length of the run is one  more  than the length of the input.  

An  a u t o m a t o n  is said to be  deterministic if N is a funct ion f rom S x E into S 

and L a funct ion f rom P(S)  into S. 

An  a u t o m a t o n  is said to be  free if its a lphabe t  consists of one  letter,  i.e., if its 

behav io r  is i ndependen t  of the input.  An  accept ing condit ion of an a u t o m a t o n  is 

a cr i ter ion to decide if a par t icular  run is a " g o o d "  run. For  the t ime being let an 
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accepting condition be 

"good"  one, if r(0)-- 

accepting condition for 

DEFINITION 3.3. Let 

"accepts" the input X 

a pair of states (s0, s~), a run r on input X will be a 

so, r(l(X))= s~. (Later on we shall define another 

inputs of length w~.) 

be an automaton with accepting condition; then f~ 

if f~ has a "good"  run on X. 

DEFINITION 3.4. Let g be a function; define 

the range of g, R ( g ) =  {x /3yg(y )= x}; 

the domain of g, D(g) = {y [g is defined in y}. 

Let f be a function defined on an ordinal a. Let [/3, 3') be a sub-interval of a. 

Define f[/3, 3') to be the restriction of f to the interval [/3, 3'). 

Let X be an input of length a _-< w~, [/3, 3') a subinterval of a. r is a run on 

X[/3, y) if r: [/3, 3')--~, S (we write, with abuse of the notation, r[/3, 3'] to denote 

the domain of r) and r satisfies Definition 3.2 within the interval on which it is 

defined. 

DEFINITION 3.5. Let r[/3, 3') be a run on X[/3, 3'); define the character of r, 

C(r)- (s , ,S ' , s2)  such that s~ = r(/3), s2 = r(3') and S ' =  R(r[/3, 3']). 

DEFINITION 3.6. Let [/3, 3') be a countable subinterval of a (3' < w,); then the 

character of X in the interval [/3, 3') is 

C(X[/3,3"))=-{C(r[/3,3,)){r[/3,3,) is a run of fl  on X[/3,3')}. 

If no confusion will arise, we shall write C([/3, 3')) -= C(X[/3, 3')), and call it the 

character of the interval [/3, 3"). Note that while the character of a run is a triple, 

the character of an input is a set of triples, the set of the characters of all the 

possible runs. 

The character of a countable input contains all the information that the 

automaton fl can gather from the input, that is if C(X 0 = C(X~), C(X2)= 

C(X~) then C(X~ + X2) = C(XI + X~) (where X + Y is the input X followed by 

the input Y) and therefore ~ accepts X, + X2 iff f~ accepts X[ + X~. 

This will hold even for countable concatenation (if oJ~ is regular); the lemma of 

choice will be employed (see 5.2). 

Now for uncountable concatenation U.D. is essential. Assume U.D. holds. Let 

X = Y-,<~, X,, X'  = Y.,<~, X',, C(X~) = C(X;), Vi < ~o~ (and each X.  X'~ is counta- 

ble); it follows that for every run r of ~ on X there is a run r' of ~ on X', and a 

cofinal closed subset of w,, F, such that r and r' coincide on F. 
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The proof of the last remark is not trivial. It can be proved by the same 

methods used in Section 6. 

4. Automata and the monadic language 

Let's see the connection between automata and the monadic language. Every 

vector of subsets of a I7" = { Y , . . . ,  Y,} is codable as input X in the following 

way: E = {0,1} n, 

{10 t E Y ,  
X ( t ) ( i )  = t ~  Y,. 

And on the other hand for every finite alphabet, E we may assume that 

E C{0, 1}" for a finite n. All input X can then be represented by a vector of sets 

as above. 

From now on we shall assume that each input X of length a is a vector of 

subsets of a. 

Now a run (a function from an ordinal to a finite set) is also codable as a vector 

of sets. For a given automaton lq the assertion " r  is a run of fl  on X "  can be 

stated in the monadic language as a formula $~(X, R ) where R is the code for r. 

The assertion "l-I accepts the input X "  can be stated in the monadic language 

by a formula A n ( X )  such that for every ordinal a and input X of length a :  

[a, <]1 =An(X)  iff ~ accepts X. 

Moreover,  the following lemma states that within the theory of well order, every 

MT-formula is generated from a formula of the form A ~ ( X )  by quantification. 

LEMMA 4.1. (Buchi.) (Prenex form for well order.) Let E(.,~) be an MT-  

formula in which the only free variables are the set variables (X~, X2," • ", X , )  = 

Ff ; then one can effectively find an automaton ~ and a formula B ( X )  ==- (prefix in 

~') A o( Y, X) ,  where ~" is a vector of set variables each occurring in the prefix, such 

that VX(E(.X) ~ B(X))  holds in every well ordered model (see [1, lemma 1.5]). 

Now if for a given well ordered model [a, < ]  we can effectively eliminate 

quantifiers in formulas of the form (prefix in ~')A~,(Y,X)  (regarding the 

formulas A~ as atomic formulas) and if for an input-free automaton l l  we can 

decide whether O accepts its (only) input then we have a decision method for 

MT[a,  < ]. 

5. The choice argument 

Let an automaton l) and an input X of length a _-< to~ be given. Suppose a is 

divided into disjoint intervals [/3~,/3~,) and for each interval there is a run of l-I 
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defined in that interval satisfying a certain condit ion,  such that  if we can choose  a 

unique run for each interval then they will all fit up to a run on a. It comes out  

that we don ' t  need A.C.  for countable  choice, and we need only U.D.  for 

uncountable  choice. 

LEMMA 5.1. (The lemma of choice.) Let 1) be an automaton,  s~,s2E S, 

S, C S ; then there is a choice function H, H :  E <~, × to ]' ~ S <~, such that if X is an 

input of  length a < to z and f is a mapping from too onto a, and there exists a run r of  

l) on X whose character is (s~, S~, s2), then H ( X , f )  is such a run. 

PROOF. Assume S and P ( S )  ordered.  Let us order  lexicographically the finite 

sequences in to,. Whene~,er we say "min ima l"  we mean with respect  to the 

order ing above. 

Let X be an input of length a such that there exists the required run on X, and 

let f be a denumera t ion  of a. From f we obtain (uniformly) a sequence 

{t~ } i < to,,, such that every ordinal t _<- a appears  in the sequence infinitely often.  

We shall build the run H ( X ,  f )  by induction. Set O- i  = {r I r is a run of ~ on X 

and C ( r ) = ( s , , S , , s 2 ) } .  Let S , = ( g , , . . . , g . )  and let ( / 3 , , . . . , / 3 . ) C a '  be the 

minimal sequence such that there exists a run r E (9 ~ satisfying r ( /3 j )=  gj, 

VJ  <_- n. Set 

O = { r [ r E O _ ,  and r (19 , )=g j ,VJ<=n} .  

By induction up to to,,, using {t,} we build the following: O,, h,, r,. We start at 

h.  = 4', r. = 4) and O.  = O. r~ will be a function from a finite subset of a '  into S (rl 

will grow to be the chosen run r). 

h~ will be a function from a finite subset of o~' to  P(S) .  h, will be defined on 

limit ordinals on which r~ has already been defined, h, will denote  the sup of  the 

run r at a limit ordinal.  

Q, will be the set of " g o o d "  runs on X. 

The following will hold: 

A)  r~ C r,+,, h, C h,+, and q5 ~ O,+, c O~. 

B) For  every r E Q~, ri C r. 

C) (t, S , ) E  h, ~ for each r E O,: sup'r  = S, and there exists r < t such that 

for every r G O~, R (r[r,  t)) = S,. 

The process of induction cont inues  thus: Let us assume ri, h,, Q, are defined; we 

distinguish between the following cases: 

1) ri is not defined on t~: Let s '  be the minimal state such that there exists 

r ~ Qi satisfying r(ti) = s'. We define r~+~ = r~ U (t, s'). h~+, = hi and Q~., = {r I r E 

Q,, r(t,) = s'}. 
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2) r~ is defined on t,, and t~ is not a limit ordinal.  Pass to the next step, do not 

change  r, h~, O~. 

3) rl is defined on t, ti is a limit ordinal,  and h, is not defined on t, 

Let  S '  be the minimal  subset  of S such that  there  exists in O, a run r satisfying 

sup',r -- S '  and le t /3  be the minimal  ordinal  such that  there  exists a run r in Oi 

satisfying, in addit ion to sup',r = S' ,  also R(r[/3, t , ) )=  S' .  Define r~+, = r,, h,+z = 

h, U (t., S'> and 

Oi+, = { r l r  E Oi A sup"r = S 'A  R(r[/3, t,)) = S'}. 

4) r~ and h, are defined on t~, ti a limit ordinal.  Let  hi(ti) = S '  = ( s [ , - - . ,  s'.) and 

7 = max (D (r~) A t~). Let  (/3,, • • • , /3 , )  C [7 ' ,  t~) be  the minimal  sequence  such that  

there  exists r E 0 ,  satisfying r(/3j) = s W J  <- n. (Such an r exists because  every  

r • 0~ satisfies sup',r = S' .)  

Define:  r~+, = r~ U {(/3j, s~,)}j_<., h,+l = h, and 

Oi+, -- { r l r  E Oi and VJ  _-< n, r(/3,) - s}}. 

Now define f = U ~<~ r, ; let us verify that  ~ is a run of [l  on X. ~ is defined for  

all t, t =< a (case 1). For  t < a let i be the first such that  r, is defined at t and t ' .  

Now for every  r E Qi+l, r( t )  = Y(t), r( t ' )  = f ( t )  and Oi÷1 is not empty ,  the re fo re  

( f ( t ) ,  X ( t ) ,  f ( t ' ) ) E  N holds (see Defini t ion 3.2). 

Let  x be a limit ordinal,  x-_< a. At  the second t ime x a p p e a r e d  in {t,} we 

defined (case 3) h, (x)  = S '  and set a/3 < x such that  for all r G Q,+I, R (r[/3, x))  = 

S' ,  thus forcing supXY C S'.  Now for every  t < x, at the first t ime we encoun te red  

x af ter  r, has been  defined at t, we did choose,  for every  s ' ~  S',  t < / 3 ' <  x and 

de t e rmined  f ( / 3 ' ) =  s ' .  The re fo re ,  supXf = S' .  

At  the same t ime we have  set hi(x)  = S' ,  there  was a run r in Oi satisfying 

supXr = S '  and r (x )  = r~(x), hence  ( supV, f (x) )  E L. So f is a run of [I on X. Let  

us see that  ~ has the charac te r  (si, S,,s2). Every  r E Qo satisfies r ( 0 ) =  s,, 

r ( a )  = s2, the re fore  ~ satisfies these condit ions.  Surely R ( f ) C  $1; now for  every  

s ' E  S, we de t e rmine  /3 =< a such that  r ( / 3 ) =  s '  for every r E Q0, the re fo re  

Y(/3) = s '  and R ( f ) =  S,. Set H ( X , f ) =  f. Q . E . D .  

LEMMA 5.2. (Countab le  splicing.) Let 1~ be an automaton,  X input o f  length 

a, a < w,, a a l imitordinal,  s', s* E S, D CS,  (D, s*) E L and {/3~} an oo sequence 

ascending to a such that: 

1) There exists a run r[0,/3~,] on X[0,/3o) with r(/3o) = s'. 

2) For each i there exists a run r[/3,/3~+,] on X[/3,/3~.,) satisfying 

C(r[/3,,/3, +,]) = (s ' ,  D, s ').  
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Then there exists a run r on X such that r[0, fl,i] satisfies (1) and r[/3,,/3,+1] 

satisfies (2) for each i, and r (a)  = s*. 

PROOF. Let : be a denumeration of a. From f we obtain {:} where : is a 

denumeration of the interval [/3,/3,+1). By the choice lemma we can choose runs 

r[/3,,/3,+,] and splice them together, then add a proper run r[0,/311), and set 

r(a)  = s*. Q.E.D. 

In Buchi's work, the use of A.C. for deciding procedure for countable ordinals 

is isolated to the countable splicing argument. Therefore, all Buchi's results 

concerning countable ordinals hold under ZF. 

LEMMA 5.3. (Uncountable splicing.) Assume  U.D. Let f~ be an automaton, 

X input of length toj, G C Q CS, Y a cofinal closed subset of to1. Y = U s~G Ys 

where Y5 are disjoint (for y E Y we denote by sy the state s satisfying y E Ys) such 

that: 

l) ( Q , s ) E  L for all s E G. 

2) Denote yo = min Y. There exists a run r on [0, yn) satisfying r(0)= So, 

r(yo) = sy,,. 

3) Let y+ denote r a i n ( Y - y ' ) ( i . e . ,  the successor of y in Y).  For each y E Y 

there exists a run r on [y, y ÷) satisfying C(r[y, y +]) = (st, O, sy+). 

Under these assumptions there exists a run r on all X such that r[0, yo] satisfies 

(2) and for each y E Y, r[y, y+] satisfies (3). 

PROOF. Given a uniform denumeration, by the choice lemma we can choose 

for each interval [y, y +) and [0, yo) an appropriate run. It follows from (1) and (3) 

that they all fit together, and as Y is closed and cofinal, they cover all of to1. 

Q.E.D. 

It follows that the uncountable splicing property is equivalent to U.D. Let us 

assume that to1 satisfies the uncountable splicing; then we shall see that every 

cofinal closed set of limit ordinals is a derivative. Let X be such a set. We define 

an automaton f /which ,  while running on the input X, "tries to guess" a set B 

such that X = B'. 

= {0, 1}, S = {a, b, c, z }, the initial state So = a .  

N is defined according to the following scheme: 

0 I 0 0 1 0,1 

c ~ z ;  c ~ a , b ;  b ~ a , b ;  a ~ a , b ;  a , b ~ z ;  z ~ z .  
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L is even deterministic and satisfies: 

L({z })= z 

L(A)=c if b ~ A  

L ( A ) = a  otherwise. 

Note that if the automaton moves into state z, it will stay in that state forever. 

Now if r is a run of 1) on X such that z~ R(r) then X = r-'(c), and B = r-'(b) 
satisfies B ' =  X. Now for a cofinal closed X of limit ordinal, the assumption of 

the uncountable splicing theorem holds for Q = {a, b, c}, G = {c}, Yc = Y = X'  

and so = a (as every closed bounded set of limit ordinals is a derivative); 

therefore there exists a run r which avoids z. 

6. Automata on uncountable input 

Let F be the filter generated in wl by the cofinal closed sets (i.e., Y E F if Y 

has a subset Z, Z is closed and cofinal in ~ot). 

We say that ZC~o~ is null if (oJ , -  Z ) G  F. Note that YC~oz is not null if Y 

intersects every cofinal closed set. 

Let --- be the equivalence relation between subsets of o~ modulo F (i.e. 

X -= Y if (X - Y) U (Y - X)  is null). For Y C oJ~ let ~" denote the equivalence 

class of Y. Now A.C. forces the boolean algebra P(oo~)/F to be an atomless 

boolean algebra (else ~ol was measurable). In fact U.D. and " F  is Nt complete"  

alone imply that each non null element of P(~o,)/F contains N, disjoint non null 

elements (see [1, theor. 5.6]). The structure of P(~o~)/F without A.C. is not clear, 

and it appears that ZF, and even Z F +  U.D. do not determine the first order 

theory of P(~ot)/E 

As every first order sentence in P(o1)/F can be stated in the monadic order 

language, we can not have a decision procedure which will be independent of 

P(oJ,)/F. The best we can do is to translate every MT sentence into a first order 

sentence of P(o~,)/F. We will see that if U.D. holds, then there is such an 

ef fec t ive  translation. 

A Buchi accepting condition for input of length oJ1 is a pair (So, G), s0E S, 

G C P(S).  The automaton 1~ accepts X if it has a run r satisfying r (0)=  So, 

{s ] r - l ( s ) ~ 0 } E  G (r-~(s)is the set of all ordinals t such that r ( t ) =  s). 

We shall use a finer accepting condition. 

DZVlNmON 6.1. An accepting condition for inputs of length oJ1 will be a pair 

(So, tO) where so E S and tO is a first order formula in the language of boolean 

algebra whose free variables are {R, Is E S}. 
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An automaton f~ accepts the input X, if it has a run r satisfying r(0) = So, and 

P(to,)/Fl=$(r ) where $ ( r ) i s  the formula ~ with the assignment rq(s) for R,. 

Note that in our terms, Buchi's accepting condition is a formula $[R, ]  which is 

a boolean form (has no quantification) in the atomic formulas R , #  ~b. On the 

other hand, if P(tol)/F is atomless, then its theory admits elimination of 

quantifiers, and since the R, are disjoint and their union is 1, every formula $ is 

equivalent to a boolean form in the atomic formulas R , #  ~b. That is, Buchi's 

accepting conditions are equivalent to ours if P( to0/F  is atomless. 

Our aim is to find a quantifier elimination method for the formulas of the form 

(prefix in Y )  A~(Y ,  X) ,  that is to show that the class of sets of input defined by 

an automaton is effectively closed under projection and complementation. (A set 

of inputs is defined by an automaton, if all its members are in the same alphabet 

and there is an automaton I /such that the set contains exactly the inputs which 

accepts.) 

As our automata are nondeterministic, that class is trivially closed under 

projection. Also that class is closed under union and intersection. (To define the 

inputs accepted by both automata fl, t)', we will have to "run in parallel" the 

automata fl and l)'.) Our main goal is to show that that class is closed under 

complementation, i.e., given an automaton I), to effectively find an automaton 

~,  in the same alphabet such that ~ accepts exactly the inputs which t) does not 

accept. 

Buchi's fundamental result is that for countable inputs, deterministic au- 

tomata are equivalent to nondeterministic ones, that is 

THEOREM 6.2. (Buchi.) For any automaton ~t, one can effectively find a 

deterministic automaton f~* such that for every ct < to1 and every input X of length 

a, ~1 accepts X iff ~* accepts X. [(See [1, lemma 4.4].) 

Using the fact that the behavior of an automaton on a countable input can be 

simulated by a deterministic one, Buchi captured the essence of an uncountable 

input in the following lemma. 

LEMMA 6.3. (Buchi.) Let an automaton tl  and an input X of length tot be 

given, let C denote the set of all formally possible input characters (i.e., 

C = P(S  × P(S )  x S)); then there is an input character e, and {Pc} c E C subsets 

of to~ such that: 

1) Pc^P~,=~b f o r c ~ c  '. 

2) Let P = Uc~cPc; P is a co]inal closed set. 

3) For each a E P, C([0, o~)) = e. 

4) I f  a E P c ,  [3EP,  a<[3 ,  then C [ a , / 3 ) =  c. 
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(NOTE. Many of the P~ may be empty.) The character e is unique, each Pc is 

unique modulo the filter F. (See [1, lemma 6.2].) 

Let us call the finite sequences (e,{Pcl)c E C the essence of the input X. 

The assertion "(e,{Pc}) is the essence of the input X "  can be verified by an 

automaton in the following sense. 

LEMMA 6.4. (Buchi.) Let ~ be an automaton; for each e E C one can 

effectively find an automaton with accepting condition f~, whose input has two 

components, one an original input of f~ and the other a vector of II c II sets which 

we denote by {Pc }, such that for inputs of length to~: Oe accepts X .  {Pc } if[ e and 

{Pc} satisfied (1) through (4) of Lemma 6.3. (See [1, lemma 6.4].) 

This automaton f~, may be deterministic; the main idea is to run simultane- 

ously several copies of a deterministic automaton which stimulates the behavior 

of fL At any time t • U Pc, a copy is employed. Two copies employed for the 

same set Pc, may be merged if they are in the same state, a copy which is 

employed for'the set Pc, should yield, at any time t E U Pc, that the character of 

the input interval it has examined is c', else the input is rejected. 

From now on we assume U.D. 

LEMMA 6.5. Let 1~ be an automaton with accepting condition (so, ~b ). Let X be 

an to~ input whose essence is (e,{/sc}); then I) accepts X iff there are G, Q, 

G C Q  CS, and disjoint elements of P(oJt)/F,{ffc,, Ic E C,s E G}, such that: 

1) ( Q , s ) E  L for each s ~ G. 

2) For each s E G there is H C S such that (s,,, H, s) E e. 

3) /5c., ~ ~ implies that for each s' E G, (s, O, s') E c. 
4) /5,. = U,~ /5c , , .  

5) Set fi, = Uc~c/sc., for s ~ G and P, = ~ for sf~ G. 
Then ~({/5 }) holds in P(~o,)/F. 

PROOF. First let us choose representatives {Pc} for {/5c} such that (1) through 

(4) of Lemma 6.3 hold. 

Assume fl accepts X. Let r be a good run of fl on X. Set G = {s [ r-~(s) ~ 6}, 

Q = supS, r, / 5  =pc  ^r-~(s).  Let 3, be such that R(r [3 ' , to0)= Q;  set F =  

{x [ sup'r  = Q, x > 1'}. F is cofinal closed and therefore intersects each r-~(s) for 

s ~ G;  thus we have (1). As U Pc is closed cofinal and, by (3) of Lemma 6.3, (2) 

holds too. For (3) if/5 ~ ~ then Pc ^ r-~(s) ^ [3 ' , to0~ 6. Let a belong to that 

set. Now [a ' ,  to~) ̂  F A (U  Pc) is closed cofinal and intersects each r-J(s'), 

s ' E  G;  (s, O, s ' )E  c by (4) of Lemma 6.3. (4) holds because U ,~c r -~ ( s ) =  1. 



Vol. 23, 1976 THE MONADIC THEORY OF to~ 263 

Now as U/5c = 1 we have /5~ -- r-:~(s), r is a good run; therefore (5) follows. 

Q.E.D. one side. 

Assume the other side. Choose representati-ves P,., for the /5~.s. We may 

assume that the P,.~ are disjoint and that assertion (3) and (4) hold for the Pc., 

and the P, (without -); otherwise we can intersect them all by a cofinal closed set. 

Set P, = U,P,.~. Now the condition of Lemma 5.3 (lemma for uncountable 

splicing) holds when we replace Y, by P, and Y by U~¢~P~ = UCP~. (Let y < x, 

y E P~, x E Ps:; there is c' such that y E Pc,. As Pc, ^ P~, ~ 49, by (3) (s,, Q, s2> E c'. 

Now x E U P c  and by (4) of Lemma 6.3, C[y ,x)  = c', therefore there is a run 

r[y, x) satisfying C(r[y, x)) = <s,, Q, s2).) 

By Lemma 5.3, there is a run r of fl on X such that r(0) = so and r(y) = s for 

y E P~. Now U~,~p~ is cofinal closed; hence r- ' ( s )  ~- P~ for s ~ G and r- ' (s )  -~ 49 

for s ~  G. By (5) r is a good run. That is, l) accepts X. Q.E.D. 

CONCLUSION 6.6. Let 1) be an automaton e E C. Then one can effectively find 

a formula t~e in the first order language of  boolean algebra, whose only free 

variables are {P,. }, c @ C, such that for every input X whose essence is (e, {tic }), 11 

accepts X iff tPe({/sc}) holds in P(to,)/F. 

LEMMA 6.7. Let 49(Y) be a boolean algebra formula in the variables Y = 

{ Yt," " •, Y ,  }. One can effectively find an automaton 11 with accepting condition, 

whose input is a vector Y of n sets s~uch that: f l  accepts Y iff 49 (~',, . . . ,  ~',) holds 

in P(w~)/F. 

PROOF. Tr ivia l .  

Now let us join all our lemmas into the complementation proof. 

LEMMA 6.8. Let 11 be an automaton with accepting condition; then one can 

effectively find an automaton (~ on the same alphabet such that 11 accepts X iff (l 

does not accept X.  

PROOF. We shall use the fact that our automata are closed under union, 

intersection, projection and cylindrification (the proof is left to the reader). Let's 

start with inputs of the form X.{Pc} where X is an original input and {Pc}, 

c C C, is a vector of [[ CII sets. 

Let e E C. By Lemma 6.4 there is an automaton 1),. ~ such that: 11,., accepts 

X • {Pc} iff {e,/5) is the essence of X and the Pc are good representatives of the 

/5, (i.e., the P~ satisfies (1) through (4) of Lemma 6.3) 
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By Lemma 6.7 there is an automaton l~e.2 such that ~'~e. 2 accepts X .  {PC} iff 

-7 t0e({/Sc}) holds in P(w~)/F. (tOe is the formula of Conclusion 6.6.) Let 1~,.~ be 

the intersection of l~e. ~ and fL.2, that is: 

1~.3 accepts X .  {P,} iff (e, {fi, }) is the essence of X, Pc are good representatives 

and --1 $,({fic}) holds in P(to,)/F. By the definition of tO, we get that i),.~ accepts 

X .  {Pc} iff (e, {P, }) is the essence of X, Pc are good representatives and [1 doesn't 

accept X. 

Now let 1]~.4 be the projection of £1e, 3 on the X component. That is, 1),.4 runs 

on original inputs and fL. 4 accepts X iff e is in the essence of X and (1 doesn't 

accept X. 

Let ~ be the ur]ion of the automata fie. 4 for all e ~ C. Then ~ accepts X if[ [l 

doesn't accept X. Q.E.D. 

Now we arrive to the input free case. 

LEMMA 6.9. (Buchi.) Let ~ be an input free automaton. Then the essence of 

its only input is in the format (e, {tic }) where tic = qb for c # e and Pe = 1. Moreover 

e can be effectively found. (See [1, remark 6.8].) 

LEMMA 6.10 Let 1) be an input free automaton with accepting condition. Then 

one can effectively construct a boolean algebra sentence tO~ such that : l) accepts its 

only input iff qJ~ holds in P(w,)/F. 

PROOF. Use the formula t0e({/sc}) of Conclusion 6.7. Substitute 1 for/se and 0 
for /5  c # e. 

THEOREM 6.11. MT[~o,, < ]  is recursive in T[P(w,)/F,  t.9, ^, - ] .  Any  

monadic sentence X can be effectively translated into a boolean algebra sentence tO 

such that: E holds in [oJ,, < ] iff tO holds in P(oJO/F. 

PROOF. Given a monadic sentence E, first put it in a prenex form (prefix in 

X )  A n ( X ) .  (See Lemma 4.1.) Then eliminate quantifiers by projection and 

complementation until you reach the input free case. By Lemma 6.10, ~b can be 

effectively constructed. Q.E.D. 

7. Complete theories of boolean algebras 

Let B be a boolean algebra. An element b of B is called atomic if for every d, 

0 # d C b, there is an atom e, e C d. An element b is called atomless if it contains 

no atom. 
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Note that 0 is both atomic and atomless. For the algebra B define the ideal / ,  

I -- {a u b l a is atomic and b is atomless}. Define B ' =  B/I. 
Now define by induction: 

B " =  B 

B '+ '=  (B') ' .  

We say that an algebra is trivial if 1 = 0. Now following Chang and Keisler (3), 

we assign to each boolean algebra an invariant (re(B),  n(B)) as follows: 

re(B)= / the least k < to such that B k is trivial, if such a k exists 
/ o,, otherwise 

[ ~ : m ( B ) =  k,O<k < ~  and B k 1 has infinitely many atoms 
n,,(B) = j : m ( B ) = k , O < k < o c  and B k-I has exactly j < t o  atoms 

n(B) = { 
0: re(B) = 
no(B): re(B) = k < to and B k is atomic 
- no(B): re(B) = k < to and B k is not atomic. 

Now the invariant can be expressed in the first order language, finite invariants 

by a sentence and infinite invariants (which contain ~) by an infinite s e t  o f  

sentences. 

It turns out that the invariant determines the first order theory, and more than 

that: 

THEOREM 7.1. (Tarski.) Let To be the theory of boolean algebra. Every 
complete extension of T,, is recursive. Moreover, the decision procedure is uniform 
in the invariant of the complete theory. (See [3].) 

THEOREM 7.2. ZFF-U.D.--~ "MT[to,, < ]  is recursive". 

PROOF. We have proved within Z F +  U.D. that MT[to,, < ]  is recursive in 

T(P(to~)/F). Tarski's assertion is proved within ZF. Q.E.D. 

PROBLEM 1. Which of the complete boolean algebra theories are admissible 

as the theory of P(to,)/F under Z F +  U.D.? 

A related problem is 

PROBLEM 2. Let MT [to,, < ] be the set of sentences which hold in [to,, < ] 

for every model M of Z F + U . D .  (that is, the set of sentences Y. such that 

ZF+U.D.  ~-"[to,, < ] I=V"). Is MT [to,, < ] recursive? 



266 A. LITMAN Israel J. Math. 

REFERENCES 

1. J. R. Buchi, The monadic second order theory of to,, in Lecture Notes in Mathematics, 
Decidable Theories II, Springer-Verlag, Berlin, Heidelberg, New York, 1973, p. 328. 

2. J. R. Buchi and D. Siefkes, Axiomatization of the monad~c second order theory of to~, in 
Lecture Notes in Mathematics, Decidable Theories II, Springer-Verlag, Berlin, Heidelberg, New 
York, 1973. 

3. C. C. Chang and H. J. Keisler, Model Theory, North-Holland, Amsterdam, 1973. 
4. R. McNaughton, Testing and generating infinite sequences by a finite automaton, Information 

and Control 9 (1966). 

INSTITUTE OF MATHEMATICS 
THE HEBREW UNIVERSITY OF: JERUSALEM 

JERUSALEM, ISRAEl. 


